Evaluation of the suitability of miniature pigs as an animal model of juvenile osteochondritis dissecans Journal Article uri icon
Overview
abstract
  • Juvenile osteochondritis dissecans (JOCD) is a developmental disease characterized by formation of intra-articular (osteo)chondral flaps or fragments. Evidence-based treatment guidelines for JOCD are currently lacking. An animal model would facilitate study of JOCD and evaluation of diagnostic and treatment approaches. The purpose of this study was to assess the suitability of miniature pigs as a model of JOCD at the distal femur. First, stifle (knee) joints harvested from three juvenile miniature pigs underwent magnetic resonance imaging (MRI) to establish the vascular architecture of the distal femoral epiphyseal cartilage. Second, vessels supplying the axial or abaxial aspects of the medial femoral condyle were surgically interrupted in four additional juvenile miniature pigs, and the developing epiphyseal cartilage lesions were monitored using three consecutive MRI examinations over nine weeks. The miniature pigs were then euthanized, and their distal femora were harvested for histological evaluation. Vascular architecture of the distal femoral epiphyseal cartilage in the miniature pigs was found to be nearly identical to that of juvenile human subjects, characterized by separate vascular beds supplying the axial and abaxial aspects of the condyles. Surgical interruption of the vascular supply to the abaxial aspect of the medial femoral condyle resulted in ischemic cartilage necrosis (a precursor lesion of JOCD) in 75% (3/4) of the miniature pigs. Cartilage lesions were identified during the first MRI performed 3 weeks post-operatively. No clinically apparent JOCD-like lesions developed. In conclusion, miniature pigs are suitable for modeling JOCD precursor lesions. Further investigation of the model is warranted to assess induction of clinically apparent JOCD lesions. (c) 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2130-2137, 2019.

  • Link to Article
    publication date
  • 2019
  • published in
    Research
    keywords
  • Animal Studies
  • Knee
  • Models
  • Orthopedics
  • Radiography
  • Surgery
  • Additional Document Info
    volume
  • 37
  • issue
  • 10