PURPOSE: To define the surgical anatomy of the meniscotibial ligament complex of the pediatric medial and lateral menisci and their relation to the proximal tibial physis and posterior joint capsule. METHODS: Fourteen pediatric cadaveric knee specimens (aged 3 months to 11 years) were dissected to clarify the relation of the posterior knee capsule, the meniscus, and the meniscotibial ligament complex. Metallic markers were placed marking the meniscotibial ligament capsular attachment on the proximal tibia. Specimens underwent computed tomography scanning to evaluate pin placement and relation to the physis. A digital measurement tool was used to measure the distances between the proximal tibial physis and the pins (placed at 5 points on both the lateral and medial menisci). RESULTS: In each specimen, clear separation was noted between the posterior joint capsule from the meniscus and meniscotibial ligament complex in the medial and lateral compartments. There was an increase in the distance between the proximal tibial physis and the insertion points of the meniscotibial ligament complex with increasing specimen age. For both the medical and lateral menisci in group 1, the median meniscotibial ligament insertion points were often less than 7 mm (interquartile range, 0.00-7.8 mm) away from the physis. The median meniscotibial ligament insertion points in group 2 tended to be farther from the physis but always less than 20 mm (interquartile range, 2.5-17.5 mm)-and as close as less than 5 mm (lateral posterior root). CONCLUSIONS: In this anatomic study of pediatric knees, we observed a distinct recess/cul-de-sac space between the posterior knee capsule and meniscal attachments in all specimens. This defines a distinct plane between the posterior knee capsule and the meniscotibial ligament complex, with a distance between the physis and meniscotibial ligament capsular attachments that increases with age. CLINICAL RELEVANCE: The anatomic parameters evaluated in our study should be considered as future meniscal repair and transplantation techniques aim to restore the meniscal anatomy, stability, and mobility provided by the meniscotibial ligament complex and capsule structures.