Apoptotic gene expression in Alzheimer's disease hippocampal tissue Am J Alzheimers Dis Other Demen Journal Article uri icon
Overview
abstract
  • Alzheimer's disease (AD) is the major cause of dementia, accounting for 50% to 70% of the late-onset patients, with 17 to 20 million affected. It is characterized by neurofibrillary tangles, neuronal loss, and amyloid plaques in tissues of the cortex, hippocampus, and amygdala. Apoptosis or programmed cell death appears in the progression of AD. In this study, we investigated the gene expression of 14 apoptotic genes (E2F1, p21/WAF, ICE-LAP3, Fas Antigen, CPP-32, GADD153, ICE-beta, c-Fos, c-Jun, Bax-alpha, Bcl-2, Bcl-(x)L, BAK, and p53) in 5 normal and 6 AD human hippocampal tissues, using reverse transcription-polymerase chain reaction. Our results show an upregulation of gene expression in AD patients for c-Fos and BAK. ICE-beta, c-Jun, Bax-alpha, Bcl-x(L), p53, and GADD153 were found to be upregulated in some AD samples but were not detected or downregulated in other AD or normal samples. No gene expression was found for E2F1 , p21/WAF, ICE-LAP3, Fas Antigen, CPP32, or Bcl-2. These results indicate significant increases in c-Fos , c-Jun, and Bak; therefore, we suggest that these genes may be critical in the apoptotic cascades of AD.

  • publication date
  • 2007
  • Research
    keywords
  • Aged
  • Alzheimer's Disease
  • Brain
  • Genetics
  • Additional Document Info
    volume
  • 22
  • issue
  • 4